MATHEMATICS RECTILINEAR FIGURES (Part - I)

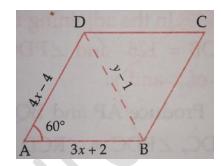
5(c) In the figure, find the values of x and y.

Solution: ABCD is a rhombus

$$\therefore AD = AB \implies 4x - 4 = 3x + 2$$

$$\implies 4x - 3x = 2 + 4 \implies x = 6 \quad Ans.$$

$$\therefore AD = AB$$



$$\therefore \angle ABD = \angle ADB$$
 [angles opp. equal sides are equal](i)

In
$$\triangle ABD$$
, $\angle A + \angle ABD + \angle ADB = 180^{\circ}$ [Angle sum property of a triangle]
 $\Rightarrow 60^{\circ} + \angle ABD + \angle ABD = 180^{\circ}$ [Using (i)]
 $\Rightarrow 2 \angle ABD = 180^{\circ} - 60^{\circ}$

$$\Rightarrow$$
 $\angle ABD = 60^{\circ} = \angle ADB$

$$\Delta ABD$$
 is an equilateral triangle. $AB = BD = AD$

8(a) In figure, ABCD is a trapezium. find the values of x and y.

Solution:
$$\angle A + \angle D = 180^{\circ}$$
 [AB || DC, sum of co - int. $\angle s = 180^{\circ}$]
 $\Rightarrow x + 20^{\circ} + 2x + 10^{\circ} = 180^{\circ}$

$$\Rightarrow x + 20^{\circ} + 2x + 10^{\circ} = 180$$

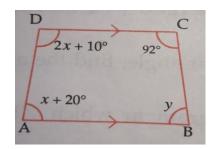
 $3x + 30^{\circ} = 180^{\circ}$

 $3x = 150^{\circ}$

$$\Rightarrow$$
 $x = 50^{\circ}$ Ans.

$$\angle B + \angle C = 180^{\circ}$$
 [sum of co – int. $\angle s = 180^{\circ}$]

$$\Rightarrow$$
 $y + 92^{\circ} = 180^{\circ}$



$$\Rightarrow$$
 $y = 180^{\circ} - 92^{\circ} = 88^{\circ}$ Ans.

9(ii) If the angle of a quadrilateral are equal, prove that it is a rectangle.

Solution: Let the angles of a quadrilateral be x.

According to the question, $x + x + x + x = 360^{\circ}$ [Angles sum prop. of a quadrilateral]

$$\Rightarrow$$
 4 $x = 360^{\circ}$

$$\Rightarrow x = 90^{\circ}$$

So, all angles of a quadrilateral is 90°

Hence, it is a rectangle. **Proved**.

9(iv) Prove that every diagonal of a rhombus bisects the angles at the vertices.

Solution: ABCD is a rhombus, AC is a diagonal.

 $AB = BC \implies \angle BAC = \angle BCA$ [angles opp. equal sides are equal](i)

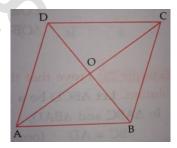
 $AD \parallel BC$ and AC is a transversal

$$\angle DCA = \angle BAC$$
 [alt.int. $\angle s$] (ii)

From (i) and (ii), $\angle DCA = \angle BCA$

 \therefore AC bisects $\angle C$

Similarly, BD bisects $\angle B$ as well as $\angle D$. Proved.



D

HOMEWORK

В

EXERCISE - 13.1

QUESTION NUMBERS: 2, 4(a), (c), 5(b), 6, 7(b), 8(b), 9(iii) and 10
